
American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

1
Copyright © rekpub.com, all rights reserved.

Research article

Relationship between P and NP. The ultimate
definition.

 Juan Manuel Dato Ruiz

Manager of Telaingenias, Ingeniería y Servicios Cartagena, Spain

E-mail" jumadaru@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.

__
Abstract.

 In this document I show almost two demonstrations for some scholars contradictorial. So that, I present an explana-
tion to understand why both demonstrations are true because changing the philosophy of the machine. Is every prob-
lem in the NP class..., in the P class too? If we have two responses, what of them is more correct? Would we find a
way to construct machines which could work in the other way? At last reality is only one, so that we cannot allow
two results from the same reality and in this document, at last, we will understand how it is possible.

Keywords: NP, NP-co, P, #P,boolean logic.

__

1 Introduction

At the beginning of the XXIst Century, we cannot ensure how the Science works yet. Some scientists work in an em-
pirical way thinking all the truth stay under they can see. Some other points to a more idealistic philosophy ensuring
they are responsible of the results. Those philosophies are contradictorial, but no one consider their asserts false for
that reason. That is so, the philosophy cannot interfere the results, it only changes the interpretation of the results for
helping the research of new technologies.
From the ancient Greeks, they had been giving to the role of human intelligence and reason an important role: it
should be able to solve the mysteries which were presenting mythological. The reason role appeared to emphasize
the use of the demonstrations. So if you could not explain why you defend a concept, then your considerations could
not be reasonable. In other words, if you could not set up a configuration in your language to construct a way to your
ideas from the ideas of the rest, your discussion would be worthless.

http://creativecommons.org/licenses/by/4.0/�

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

2
Copyright © rekpub.com, all rights reserved.

That consideration could be worthy if we remembered there were two philosophies in mathematics: the construc-
tive and the formalist. Indeed, scientific development would be doomed to have to be defined within an environment
or idea where the truthful itself was clear, that is, before you know what we mean by scientifically valid you should
know what constitutes convincing. And if we have two philosophies for the mathematical demonstrations then, what
can we find if we merge documentations of different types?

 So the first, and above all, was the philosophy of science: the way we choose to give to fundamental postulates a
role in science for our intellectual environment convincing. Something rigorous that we thought it was of rigorous
writing, it would be something more like ambiguous. And the role of the philosophy is to fill the gaps before answer-
ing the questions.

That is the why we will have two definitions for the Machine of Turing and his NP problems: one definition for a
constructive demonstration, and another one for a formalist one. Both definitions will accept a Turing Machine is
merely a tape that is modified according to an instruction set. When our instruction manual requires us to give an
answer within a time expressible polynomial bound on the size of the input, we say that the machine is polynomially
bounded. This is very important because it means that we could budget their construction so that one could study the
feasibility of its use.

However, these machines can present a distortion within individual instructions describing the operation of the
machine itself: if you are able to describe how to get to the final state regardless of the intermediate states through
which must pass the machine, then the machine is called to be not deterministic. That is, with a nondeterministic ma-
chine we must say what we want and the machine is concerned with how to get to that state.

When we combine the two concepts (dimension determinism and polynomial) the key statement will be displayed:
polynomially bounded deterministic machines are often called P, nondeterministic machines polynomially bounded
are often called NP. The point is, if we can express NP like P, then we could build machines that support more de-
scriptive instructions without losing its deterministic character. So, P is equal to NP? That question is regarded by a
million of dollars by Claymath Institute. So the question is still open and in this document we will answer it. And the
main problem we really have is that many of the demonstrations surrounding studies of P and NP are stained with a
philosophy unfit for scientific development concepts: mixed formalism with constructivism, and Turing Machine
does not extend beyond constructivism. However, we will see in this document a philosophy to get a formalist Tur-
ing Machine.

The incompleteness theorem of Gödel is essential to understand all these problems: when we combine concepts
endless as ω-unification with an ability to demonstrate inductively we will get inconsistent results. The ω-
unification all it means is that we replace the parameters in the corresponding variable to infinity. And of course,
there's something left over, can we really carry out an infinite number of assignments? Can we combine our results
with arithmetic to prove any statement? Many statements of arithmetic can be proven in a Turing machine in a poly-
nomial bound, so how long can we extent a nondeterministic machine definition for solving what we know we can
not solve?

The mathematical formalism is only concerned to prove the statements are coherent. But that kind of universe
could allow us possible combinations which are impossible to construct. In any case, my intention here was only to
show the difference between symbols constructivists (those from the symbol 1) and symbols formalists (those from
logic). Understanding that the formalism will worry about consistency, while constructivism will worry about if it
can be demonstrated or built. The formalism is more general and goes further with more claims, while constructivism
is simply accurate.

 It is, therefore, at this point we realize that the same statement for natural outcome and for the irrational could
give the opposite result. But all our considerations will go to the wonderful demonstrations able to do this when the
definition of natural was not necessary in the show.

One example is Fermat's theorem. Through a known theorem in reals we can show that the equation xn= zn + yn
with n, x, y and z are greater than 2 will find a solution for any n, y, z natural in a x real. And of Fermat's last theo-

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

3
Copyright © rekpub.com, all rights reserved.

rem, we understand that this equality with x natural is impossible. There is a fake counterexample Fermat's theorem
that is very famous: Those four naturals work the equation on any calculator, but that can not be corroborated in a
computer. That is, from the point of view of natural and constructivism the mathematical statement is exactly as
enunciated by Fermat. However, in terms of approaches you can take the opposite case in little machines. We can
formally give a practical reality that works coherently with those irrational numbers that makes impossible the state-
ment. And that practical reality could be a short of mind calculator.

That were the reasons we could work with the two philosophies which will answer the same question with the both
answers possible.

2 Constructively, P class is different to NP class.

For our first analysis we will study what is the answer by a constructive philosophy. To get demonstration, firstly we
have to define our Turing machine as if it were a function, to get it more comfortable.

2.1 Working with lambda calculus.

Given a tape that can encode through a natural number called E, we can adopt a configuration set by another natural
number which we call C, the result is the encoded tape S, where S = C (E).

For example, if C is the function that adds one to the entry, we can say:
C = λN. N+1

E = 1
S = 2

(1)

If it is of our interest, we could consider the configuration C as another number, so we can work in defining its code.
For example, in our language we could recognize three types of tokens used in expressions described in Table 1. So
the expression λN. N+1 can be expressed in this way: $0 + 1.

Table 1. Tokens in the language which codes a function so general so a Turing Machine.

Type Description Cardinal
0 symbols +, -, *, /, (,), ...
1 arguments $0, $1, $2, ...
2 naturals 0, 1, 2, ...

Otherwise, if we take pairs with the format (cardinal, type) then

$0 + 1 Ξ (0, 1), (0, 0), (1, 2) (2)

At this point we notice that (A, B) Ξ 3·A+B = N does not loose information, because

(A,B) = (N DIV 3, N MOD 3) 3

So the expression results: $0 + 1 Ξ 1, 0, 5. At last we only have to use the numbers of Gödel to find an integer, so if
we want to encode the function λN. N+1, we should make some opperations:

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

4
Copyright © rekpub.com, all rights reserved.

λN. N+1 Ξ cod(λN. N+1) = 21·30·55 = 6250 (4)

If we factorized 6250 we could decode the operations λN. N+1. Now, let’s define a function XOR natural: it could
be defined as the result of applying the function itself bitwise XOR between such natural, so if there is A XOR B =
C then A = B XOR C, for any A, B, C natural.

Let’s choose a value for A, in instance, A = 342; otherwise, B = 6250. To opperate 342 XOR 6250 we have to
transform both numbers to binary:

625010 = 11000011010102

34210 = 1010101102
(5)

So that, we only have to operate as in Table 2.

11001001111002 = 646010 (6)

With the XOR function definition we will declare X so that X = C XOR E. And here is where we can ask the big
question: given the values X and S (where S = C (E)), can we deduce E?

Moreover, we can simplify our problem: suppose that C is bounded polynomially (as we know as XOR is), is it
possible to deduce E within a polynomial bound validating S and X? If we had all Turing machines at our disposal
and some ability to manage at once, the answer is yes: but because we would be using a non-deterministic Turing
machine.

Table 2. How works the XOR function on two naturals.

625010 34210 625010 XOR 34210
1
1
0
0
0
0
1
1
0
1
0
1
0

0
0
0
0
1
0
1
0
1
0
1
1
0

1
1
0
0
1
0
0
1
1
1
1
0
0

From our example: if we remember C = 6250, so our entry E = 342. That means that

S = C (E) = (λN. N+1)(342) = 342+1 = 343 (7)

So if I tell you X = C XOR E = 6460, and S = C (E) = 343, how do you pretend to discover any E?

The answer that question ensures we are asked to find a C that meets: S = C (C XOR X). Then C will certificate

the return of E with the formula E = C XOR X. Now, it is intended that a Turing machine configuration is able to

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

5
Copyright © rekpub.com, all rights reserved.

handle all these possibilities, discriminating configurations that cause the machine to crash, or even those that are not
polynomially bounded? If we had such a good mechanism we could use it to index only the machines that works and
are polynomial. However, in the proof of Gödel there is no reference to the detail of the dimension polynomial, so
finding the equivalence means accepting that we would have a mechanism for dealing with constructible configura-
tions, where the incompleteness theorem ensures otherwise.

2.2 A definition of a function impossible to code.

The explanation in 2.1 may not satisfy some other scholar, however you can expect an alternative proof even more
rigorous and elaborated that demonstrates booster for those who still harbor doubts: it is the using of a function
called H.

We say that H is an integer representing the configuration of a Turing machine, where if its entry is B then its out-
put will match a single X that comply necessarily:

Rule 1. if X (a1) = b and X (a2) = b then a1 = a2. That is, X is injective.
Rule 2. . X (X) = A
Rule 3. . X (X + A) = B

In addition we will emphasize that H is also injective defined in a way.
Let get an example to define a pair in the correspondence of H:

λN. N+1, injective function
λN. N+1 Ξ 6250 = X

A = X (X) = (λN. N+1)(6250) = 6251
B = X (X + A) = (λN. N+1)(6250 + 6251) = 6250 + 6251 + 1 = 12502

For that reason we could say that there is a correspondence in H in the way H(12502)=6250. Otherwise, if we

could find a Y for our encoding such that: Y(Y+Y(Y))= 12502 and Y≠6250, we would say that H won’t find Y, be-
cause its definition must be injective in a way.

As a result, we know that this function makes sense because X always find configurations where for a coding sys-
tem settings: X (cod (X)) = A and, on the other hand, X (A + cod(X)) = B so that H (B) will be defined, even it will
be bounded if X was.

Now suppose that our coding is defined such that H (cod (H)) = cod (H), which is also easy to define because af-

ter calculating H (cod '(H)) is easy to change the coding on the other. Because encryption is independent of the way
H has to be resolved in the Turing Machine (or in our notation of Alonzo Church, lambda-calculus). Ie H (A) = cod
(X) and H (A') = cod' (X) must refer to the same X even altering the way to encode it.

Therefore:

Step 1. H (H) = H, defining the selected coding.
Step 2. . H (H) = A, by Rule 2.
Step 3. . H (H + A) = H, by Rule 3 combined with Step 1
Step 4. Contradicts: H is not injective, for Steps 1 and 3.

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

6
Copyright © rekpub.com, all rights reserved.

We know that, so being able to define H injective so we would only set cod(H) = 0, which questions the computing
power of the machine to not be able to be defined within the natural and undetermined manner.

As H is linked to the encoding mechanism, then we cannot validate the existence of that function.
On the other hand, if there were a mechanism to determine which C holds for an S and X where S = C (C XOR

X) for any encoding then we would be able to implement H. In any case the link with the dimension polynomial is
easy to adhere to the demonstration for the required response. So the impossibility of the existence of H in a deter-
ministic polynomial bounded Turing Machine, points NP≠P.

Without imposing this type of dimension, it can be argued more general statements about the impossibility of find-
ing configurations from their outputs. Now, what this result tells us is that the algorithms zero-knowledge are valid,
as long as you know how to implement them. For example, the NP-completeness of Cook should not be valid, be-
cause his theorem is proved with a formalist philosophy, that concept will be discussed later.

3 Formalist philosophy and # P = P.

As we mentioned at the beginning, formalism offers us more vague and general results. The inaccuracy comprises

the inclusion of infinity like an enumerable value, or even it makes use of transfinite numbers thanks to endless ex-
pressions that allow us to work on some kind of algebra.

All of this will lead us to models with a long variety of degrees of accuracy. And it takes us to the possibility that
certain statements completely change sign: whatever could be false before now could be true.

That's why we study #P: #P resolutions returns the number of solutions behind a statement which can be validated
within a narrow polynomially Turing machine.

The formalism allows us to find a secure connection between these two classes if we accept as valid any corres-
pondence whose existence is consistent and not in terms of what are we capable of constructing. That is, this way of
answering questions will tell us that there will be a setup, but we do not know how to get it.

At this point, we will need to get something more close to the original notation of the Turing Machine: we will say
that a Turing machine tape is composed of cells.

In each one of them we can read a symbol belonging to a finite set of symbols, which is its alphabet. The configu-
ration of the machine consists of a description of what state to what state transitions, depending on the symbol read
from a pointer to the ribbon, to determine whether to change the symbol or whether to move the pointer to the left or
right.

3.1 Working with Boolean Formulas.

From this more original definition from Alan Turing, we will define what we want to solve: #SAT is equivalent to
know how many solutions has a Boolean equation. To put it in our Turing machine we must stay with the definitions:

1. Boolean variable: Variable that takes the values 0 or 1, but not both.
2. Literal: Variable affirmed or denied within Boolean logic.
3. Clause: Sum of Boolean literals.

Any Boolean function can be expressed easily and quickly in product clauses: for this, every time we see an expres-
sion other than a sum between literals, then the expression is changed by a new variable that is equivalent to the ex-
pression. As the only operation that sum is not the product (for the denial of a product is the sum of its denied), then
the process is quite simple.

So we will need to define a lemma:

(Z = XY) ↔ (¬Z + X) (¬Z + Y) (¬X +¬Y + Z) (8)

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

7
Copyright © rekpub.com, all rights reserved.

Table 3. Demonstration of (8).
Lemma 1: (Z = XY) ↔ (¬Z + X) (¬Z + Y) (¬X +¬Y + Z)

(Z = XY) ↔ (¬Z + X) (¬Z + Y) (¬X +¬Y + Z)
Z X Y = ¬Z X + ¬Z Y + ¬X ¬Y Z +
0 0 0 1 1 1 0 1 1 0 1 1 1 0 1
0 0 1 1 1 1 0 1 1 1 1 1 0 0 1
0 1 0 1 1 1 1 1 1 0 1 0 1 0 1
0 1 1 0 1 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 0 0 0 1 1 1 0 1 1
1 1 0 0 1 0 1 1 0 0 0 0 1 1 1
1 1 1 1 1 0 1 1 0 1 1 0 0 1 1

From that lemma is easy to demonstrate another:

Step 1. (Z = XY) ↔ (¬Z + X) (¬Z + Y) (¬X +¬Y + Z), from (8)
Step 2. (¬Z = ¬X+¬Y) ↔ (¬Z + X) (¬Z + Y) (¬X +¬Y + Z), applying DeMorgan
Step 3. (Z’ = X’+Y’) ↔ (Z’ + ¬X’) (Z’ + ¬Y’) (X’ +Y’ + ¬Z’), by substitution

So that points to the equation (9).

(Z = X+Y) ↔ (Z + ¬X) (Z + ¬Y) (X +Y + ¬Z) (9)

In any event, you will have a very simple sums of a product which should take a value of 1. And we wonder how
many solutions has the formula.

For example, let’s study the formula X1·X2·(X3 + ¬X2·X5·(¬X1+X3·X4)) = 0. We want to convert it to a product of
sums of literals whose result were 1.

First: We have to convert the result to 1.
¬X1 + ¬X2 + ¬(X3 + ¬X2·X5·(¬X1+X3·X4)) = 1

Lastly

3.2 Demonstration #P=P.

: We will apply lemmas 1 or 2 on the product or sum of literals where needed.
X3·X4 = Z1

(¬X1 + ¬X2 + ¬(X3 + ¬X2·X5·(¬X1+Z1)))·(¬Z1 + X3)·(¬Z1 + X4)·(Z1 + ¬X3 + ¬X4) = 1
To the new clauses we will call them α1, so:

(¬X1 + ¬X2 + ¬(X3 + ¬X2·X5·(¬X1+Z1)))· α1 = 1
Now we continue:

¬X1 + Z1 = Z2
(¬X1 + ¬X2 + ¬(X3 + ¬X2·X5·Z2))· α1· α2 = 1
α2 = (Z2 + X1)·(Z2 + ¬Z1)·(¬Z2 + ¬X1 + Z1)

Continuing with substitutions:
X5·Z2 = Z3

¬X2·Z3 = Z4
X3 + Z4 = Z5

At last, we will conclude:
(¬X1 + ¬X2 + ¬Z5)·α1· α2· α3· α4· α5 = 1

To solve it in our setup formalist, we only have to enter in each cell a clause in full. So if our formula has 5 claus-
es then the size of the input could be exactly 5, the why is we will not need intermediate cells. Our alphabet, there-
fore, must decode the variables V in 3V combinations representing a clause in full, plus the relevant symbols to man-

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

8
Copyright © rekpub.com, all rights reserved.

age the output of the machine. The configuration will perform a linear path to meet an invariant: in the current state
of the same subscript solutions encrypt all clauses read so far.

Fig. 1. A tape which alfabet are clauses.

That is why we must label the states of the Turing machine with an aditional integer: the subscript encodes a binary
matrix whose columns are the variables and as whose rows are each possible solution to the clauses that have been
read.

Fig. 2. How to get encode the query.

In Fig. 2 we can see each clause is transformed in a tuple of three digits where 1 means literal is affirmed, 2 means
the literal is negated an 0 means literal does not appear in the clause. So if the order is (x y z), then x + ¬y is
represented as (1 2 0).

Our query must be represented by a number which will encode the matrix bellow. In the matrix we see a column
for each variable (x, y and z), and we can see some rows crossed out. Those rows are the combination that does not
match with the clause pointed (x + ¬y). So we can count 6 solutions from the matrix encoded in our query.

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

9
Copyright © rekpub.com, all rights reserved.

Fig. 3. How the query changes.

As we can see, if c is the number of columns, then the number of states must be 2c. And if V is the number of va-
riables, then c = 2V. We will study this more clearly with an example later.

When the pointer moves to the right to read the next clause, we have to intersect rows of the actual matrix with the
new one pointed. So if the new clause obligates us to cross out some rows, then we only have to do it on the matrix
of the query. Thus is the why we have defined a state transition function consistent with the required solution.

In our example in Fig 3, we can see how the clause of the second cell obligates us to cross out two new rows. That
is the why the number of solutions of the formula (x + ¬y) (¬x + ¬z) is four. So if we want to know how many solu-
tions the entire formula have got, we only have to let the algorithm continue until the end.

Because the size of the alphabet and the number of states is not related to the complexity of the decision, the solu-
tion of #SAT is linear. In fact, the result (the number of solutions of the formula) can be printed after reaching a
blank cell.

If someone tells us that a mechanical machine could not opperate with such number of states, because it had
needed to activate a great number of clevers. I will respond him “yes” but, under our formalism philosophy, we can
generate a very complicated machine with a great constant which will ensure us that problem can be solved in a li-
near time.

To get a better understanding, I will give you an example of how to see this no so-mechanical Turing Machine:

Fig. 4. How the algorithm ends.

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

10
Copyright © rekpub.com, all rights reserved.

Imagine someone shows us in a piece of paper the formula shown in Fig. 1. To respond how many solutions validate
that formula, we will use a manual. How big the manual must have? Our configuration of Turing Machine tries to
solve that boolean formula of V variables, so if c = 2V then we will need 2c pages in that book with 3V lines in a
page. That means that in our example we will need a book of 256 pages with 27 rows in each page. Every page is of
the format

“expression → page”.
That means that in that page if we read exactly the clause as the expression then we will have to reach the page in the
manual, for reading the next token.

After reading each clause we will know how many cases match with that page, because that number is printed in
every page.

So if our philosophy is able to construct that kind of machine, then we are able to solve #SAT.
Someone could say that kind of machine is impossible to construct..., well, perhaps not at all. And the respond

would be answered in superconductors, spintronics or quantum computing for instance.
This result tells us that #SAT is a P class, from a formal point of view. However, the curious result goes far

beyond.
Because Cook's theorem were defined in a formalistic way, we know that an NP language can be expressed by

SAT in a Turing machine. So from this point of view we might well say that it is shown that #P = P. However, to
reach this conclusion must overcome a double inaccuracy: the existence of a map of any NP to SAT, and the exis-
tence of the correspondence described herein.

Another thing to consider is the existence of machines about tend to produce results increasingly polynomial. That
is, if there is a correspondence P that solves a #P, so it could not be unreasonable to think that there could be slow
training mechanisms which would help us pull together to resolve those configurations.

One consideration to take into account is the fact that it has taken to establish a maximum number of variables.
This means that if the problem would have taken any number of variables, then if we want to solve it for any type of
entry and configuration it would have needed to use the "trick Cook" to solve the other problems.

Conclusions

Until this point, we can understand the same question is able to generate two answers. But what a lot of scientists do
not know is that a philosophy by itself is not enough to get the expected result. We can combine different philoso-
phies avoiding contradictions.

A good example is in the interpretation of the cycle of life of the Science. Kuhn thought Science works in para-
digms. In the point of view of Kuhn, the beginning of a new paradigm destroys the paradigm before. In example, the
paradigm opened by Einstein destroyed the paradigm of Newton to create a new Physics. That view is equivalent to
the philosophy of the formalist: you can construct every model that is coherent. So finding a contradiction is the only
way to change the paradigm. But, of course, that model was criticized considering we nowadays live better than in
the Middle Age. That is the why formalism is not complete.

In other hand, constructivism is not complete neither: we can considerate the falsationism of Popper . That author
ensured every concept which could not be denied by a demonstration could not be accepted. That way of allowing
asserts is equivalent to be capable of constructing demonstrations. So that philosophy is really constructive: because
you need to create a demonstration in a language to allow an affirmation. That was different to the paradigms of
Kuhn because Kuhn allowed every coherent paradigm. But the fact is Popper could not accept easy things like Ethics
(something too trivial to get worried). People could allow a moral stronger than allowing some new researches in a
laboratory: so the constructivism is not complete too.

American Open Computer Science Journal
Vol. 2, No. 1, July 2015, pp. 1-11

Available online at http://rekpub.com/Journals.php

11
Copyright © rekpub.com, all rights reserved.

There must be an intelligent merge between the constructive machine and the formalist one. But to get the correct
conclusions, how does the formalist machine look like? How is made the oracle machine described by Alan Turing?
We can imagine a digital system solving constructive problems but, how can get constructed a formalist machine?

The response to that problem could be easier than we would though if we study all the ways we have to find Tur-
ing Machines from different sources. The best example could be our proper life: too far to be digital. So we need a
notation that, working under a Turing Machine, will get us the benefits of the formalist philosophy with materials
existed on Earth.

That example is in the Dirac notation: imagine we have some sub particles that are distributed like in Fig. 5. As
we can observe, some doors set up an output per mutating the initial state to another without loosing information. In
this way, if we could determine the energy of the wave of the last qbit, we would calculate, dividing a constant,
#SAT. Does exist a material able to give us that kind of information? – Of course, it is called superconductor.

Fig. 5. Example of relation between #((X1 + X3) (X2 + ¬X3) (¬X1 + ¬X3) = 1) and quantum machines.

Our experience tells us there is no quantum computers of too many qbits; and experimental observations nowa-

days requires exponential time to collapse the state..., but I even have a continuation of this document in that direc-
tion. What we only need to understand before is the difference between digital electronic and spintronic to see how
the cybernetic works.

So the intelligent relation between semiconductors and superconductors can give us a machine whose design will
calculate so fast as a Personal Computer analyzing better than the best live logician on Earth.

References

[1] Michael R. Garey / David S. Johnson: Computers and Intractability. A guide to the theory of NP-Completeness.
[2] S.A. Cook : http:// www.claymath.org/millenium/P vs NP/
[3] Harvey M. Friedman: Clay Millenium Problem P = NP. Mathematics Colloquium in Ohio State University Oc-
tober 20, 2005
[4] Alan M. Turing : On computable numbers, with an application to the entscheidunsproblem.
[5] Ludwig Wittgenstein: Sobre la certeza.
[6] A. Pérez de Laborda: La ciencia contemporánea y sus implicaciones filosóficas.

	2.1 Working with lambda calculus.
	2.2 A definition of a function impossible to code.
	3.1 Working with Boolean Formulas.
	3.2 Demonstration #P=P.

